LEARN HOW TO PROTOTYPE YOUR IDEAS!
About Fab Academy

Future brings new challenges, and to face them, new careers are surfacing. Soon, we’ll have Drone Experience Designers, Avatar Programmers and Artificial Organ Designers. In Fab Academy, you will get the chance to see how designs become real, how bits become atoms and how your ideas can impact the world.

Fab Academy is an intensive five-month program that teaches students to envision, design and prototype projects using digital fabrication tools and machines. It is a multi-disciplinary and hands-on learning experience that empowers students to learn-by-doing and inspires them to make stuff locally to become active participants in sustainable cities and communities.
Program Content

Project management
Introduction to the tools that will be used in the course (version control, web development, project management, etc) tools) and project management principles. Getting through a GitLab!

Computer-aided design
Covering all the possibilities for 2D and 3D software, tools and formats. You will start sketching your Final Project.

Computer-controlled cutting
You will get acquainted with cutting possibilities; CAD & CAM intro; Vinyl cutter and Laser cutter introduction and exercise.

Electronics production
First steps into electronics production. We start with PCB (Printed Circuit Board) description and production.

3D scanning and printing
You will get an introduction to additive vs subtractive processes and learn 3D printing processes, material, machines, formats and software. Also, 3D scanning tools and machines.

Electronics design
Keeping up with the electronic production, you will get an introduction to components, circuits and testing equipment.

Computer-controlled machining
You will get an introduction to projects, machines, materials, tools and more, to then design, mill and assemble something big!

Embedded programming
Learning the essentials of programming small computers (microcontrollers) to drive devices and program your board.

Molding and casting
Learn to design and produce molds to then test castings of objects and parts.

Input and Output devices
You will broaden the possibilities of your microcontroller board by adding hardware to capture data, and to send data to another device or user.

Applications and implications
Why to design? And why to make rather than buy? The impact of our practice.

Networking and communications
Data transmission through wired or wireless media.

Mechanical design
You will get the basic knowledge to design a machine and build the mechanical parts to operate it manually.

Interface and application programming
You will get the necessary tools to write an application that interfaces a user with the input &/or output device that you made.

Machine design
Once you have the mechanical parts, you will learn the essential notions to automate your machine.

Wildcard week
For this assignment, you will be asked to design and produce something of your choice, with a digital fabrication process not covered in previous assignments (composites, textiles, biotechnology, robotics, folding, and cooking...)

Invention, intellectual property, and income
An introduction to key concepts that will help you bring your projects or product to the market.
Program Structure

General Structure

<table>
<thead>
<tr>
<th>Classes</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly Reviews</td>
<td></td>
</tr>
<tr>
<td>Final Presentations</td>
<td></td>
</tr>
<tr>
<td>Global Evaluation</td>
<td></td>
</tr>
<tr>
<td>Graduation/Conference</td>
<td></td>
</tr>
<tr>
<td>Applications Students</td>
<td></td>
</tr>
<tr>
<td>Applications Nodes</td>
<td></td>
</tr>
</tbody>
</table>

Fab Academy cycle

- **Week 1**: Computer-controlled cutting
- **Week 2**: Electronics production
- **Week 3**: Principles and practices: Presentations, introductions
- **Week 4**: Project Management
- **Week 5**: Computer-aided design

Post cycle

- **Holiday break**: Easter break TBC

Weekly Term Structure

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>February</td>
<td>March</td>
<td>April</td>
<td>May</td>
</tr>
<tr>
<td>Feb</td>
<td>Computer-controlled cutting</td>
<td>Electronics production</td>
<td>Embedded programming</td>
<td>Machine design</td>
</tr>
<tr>
<td>March</td>
<td>Output devices</td>
<td>Easter break TBC</td>
<td>Applications and implications</td>
<td>Wildcard week</td>
</tr>
<tr>
<td>April</td>
<td>Interface and application programming</td>
<td>Machine design</td>
<td>Wildcard week</td>
<td>Molding and casting</td>
</tr>
<tr>
<td>May</td>
<td>Project development</td>
<td>Project presentations</td>
<td>Applications and implications</td>
<td>Wildcard week</td>
</tr>
<tr>
<td>June</td>
<td></td>
<td>Evaluation closing</td>
<td>Project presentations</td>
<td>Finishing Documentation</td>
</tr>
<tr>
<td>July</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
fablabbcn.org/fab_academy

Write us: info@fablabbcn.org
Call us: +34 935 995 628